- cross-posted to:
- programmer_humor@programming.dev
- cross-posted to:
- programmer_humor@programming.dev
Anyone who thinks OP asking about Assembly with this meme should play the game Turing Complete. It’s great. You have to design a computer all the way from the most basic logic gates (I think you only get a NAND gate to start), designing an ALU and CPU, creating your own machine language, and writing your own programs in the language you designed, and it’s all simulated the whole time. Machine language is pretty advanced as far as things go.
From your description this sounds more like a job in IBM’s R&D department than a game
All the best games sound like jobs when you describe them.
factorio, satisfactory, oxygen not included, RimWorld, Stellaris, dwarf fortress, gregtech new horizons…
Assembly code is for writing C compilers, and C compilers are for writing Lisp interpreters.
I saw a Scheme interpreter written in assembly running a C compiler written in Scheme.
There’s actually good reasons for this design. It’s easy to write a Scheme interpreter in assembly, but it’s hard to write a C compiler in assembly that handles everything correctly. Much rather write it in higher level language if possible and Scheme lowers the bar to getting there, so you can get away from using assembly as quickly as possible. Or you can copy somebody else’s Scheme implementation of a C compiler because now you’re platform independent.
Then you can write your C compiler in C (or steal a better compiler already written in C) and close the loop. For your final step, you use the C compiler to compile itself.
Only the most very basic compilers. C compilers are in C mainly.
Not the first C compiler obviously. According to this Stack Overflow post, BCPL* begat B, which begat C. Language self-hosting is pretty fascinating.
*Perhaps BCPL was originally written in assembly; I’m not certain: https://github.com/SergeGris/BCPL-compiler
Back in High School in the 80’s me and a buddy wrote a Z-80 editor assembler in TRS-DOS BASIC.
It was not rocket science.
I never did get very far with the TRS-80 Editor Assembler, but that was my first exposure to such things.
I also remember the BASIC code for the Dancing Daemon which was replete with PEEKs and POKEs, such that much of it was written in machine code.
Look at mister fancy pants with and assembler.
How about entering straight opcode, operand with only a hex keypad and two pairs of 7 segment LEDs. You can only see one set of numbers at a time. You had to write it out on paper to be able to keep track and count positions so you don’t use your spot.
I had to do this as a project in school. Two 8088 units that we breadboarded to a UART that we used to drive a fiber optic link to communicate with each other with a basic protocol. All descrete components hand wired and coded.
It made you tie all of skills together into a full system of hardware and software.
Alright you and Joe McMillan had a great weekend we get it
Assembly used to be a required course for CS undergrads in the 90s. Is that no longer the case?
Also we had to take something called Computer Architecture, which was like an EE class designing circuits with gates and shit.
Which target did you use? Having to learn even a fraction of modern x86 would be ridiculous, but SPARC or something could be good to know, just to reduce the “magic box” effect.
I learned MIPS as an undergrad. Pretty neat little RISC architecture.
Required course work for electrical engineers in the early 2000s.
I had to learn assembly but was one topic of many we handled in architecture. Like one question of one exam. That was one of the toughest professors we had, class was about 2001
OS and embedded dev here. I use assembly all the time. I’ve even worked on firmware that was entirely in assembly of strict requirements that couldn’t be met in C.
Also even machine code hides a lot about how the underlying machine works so if you really want to do computing from scratch you really do hate to invent the universe because there’s abstractions all the way up the hardware stack just like there is in software.
Assembly isn’t that hard. It’s the same imperative programming, but more verbose, more work, and more random names and patterns to remember. If you can understand “
x += 3
is the same asx = x + 3
”, you can understand how theadd
instruction works.I wouldn’t be able to write Rollercoaster Tycoon in assembly because keeping track of all that code in assembly files must be hell, but people pretending like you need to be some kind of wizard to write assembly code are exaggerating.
These days, you won’t be able to beat the compiler even if you wrote your code in assembly, maybe with the exception of bespoke SIMD algorithms. Writing assembly is something only kernel developers and microcontroller developers may need to do in their day to day life.
Reading assembly is still a valuable skill, though, especially if you come anywhere near native code. What you think you wrote and what the CPU is actually trying to do may not be the same, and a small bit of manual debugging work can help you get started resolving crashes that make no sense whatsoever. No need to remember thousands of instructions either, 99% of assembly code is just variations of copying memory, checking equality and jumping anyway. Look up the weird assembly instructions your disassembler spits out, they’re documented very well.
Assembly is hard, because you need to understand your problem on multiple levels and get absolute zero guidance by compilers.
Even C guides you a tiny bit and takes away some of the low level details, so you have more mental capacity to actually solve your problem.
Oh, and you have a standard library. Assembly seems to involve solving everything yourself. No simple function call to truncate a string or turn a char array to uppercase.
deleted by creator
Having toyed with video game reverse engineering, I definitely feel like I ought to learn a bit more. I understand
mov
, pointers and registers, and I think there was someinc
andadd
in the code I read to try to figure out base pointers and pointer paths (using Cheat Engine), but I think knowing some more would serve me well there.[This comment has been deleted by an automated system]
I wouldn’t be able to write Rollercoaster Tycoon in assembly because keeping track of all that code in assembly files must be hell, but people pretending like you need to be some kind of wizard to write assembly code are exaggerating.
Well, they’ve got a point for the bigger machine codes. Just the barebones specification for x86 is a doorstopper IIRC.
From what I’ve heard, writing big stuff in assembly comes down to play-acting the compiler yourself on paper, essentially.
deleted by creator
TIL. I had tried to understand it a bit, but felt lost pretty fast, and then eventually found out that’s because it’s huge. Is there a good intro to the basic instructions you’re aware of?
By “play act the compiler” I mean a fairly elaborate system of written notes that significantly exceeds the size of the actual program. Like, it’s no wonder they started thinking about building machine compilers at that stage.
[This comment has been deleted by an automated system]
What language is your pseudocode example modeled after? It vaguely reminds me of some iOs App code I helped debug (Swift?) but I never really learned the language so much as eyeballed it with educated guesses, and even with the few things I double checked it has been a few years, so I have no clue what is or isn’t legal syntax anymore.
deleted by creator
Not exactly accurate, I think. Even machine language is bound by the CPU’s architecture. You can’t do anything in machine language that wasn’t specifically provided for by the CPU architects.
It would be more accurate to say it’s like creating a new universe using all the same laws of physics, thermodynamics, cosmology, ethics, etc as our existing universe.
I don’t think accuracy was the goal, it is a joke not a dissertation. It’s more about how it feels to try a language like assembly after working with higher-level languages.
I get the feeling that all of these assembly jokes are justifications to avoid learning assembly.
You can still make syscalls in assembly. Assembly isnt magic. It isn’t starting from the creation of matter and energy, it’s just very specific code.
It’s just a joke friend.
I said so in my comment, try to keep up.
A very bad one if it requires switching off a large portion of your brain to find it funny.
suspension of disbelief
Ha! I teach assembly and use this one every year to lighten the mood before midterms.
I remember watching assembly demos in the early-mid 90s and thinking those guys were wizards
It’s now been 18 years since the last time an employer paid me to write assembly, but it’s only been a year or so since the last time I had to read assembly at work (in order to verify what the compiler really was doing).
IMHO assembly isn’t hard. When you gain enough experience you start to see „visual patterns“ in your code. For example jumping over some lines often equals to a if/else statement or jumping back is often a loop etc. Then you are able to skim code without the necessity to read each line.
The most difficult part is to keep track of the big picture because it is so verbose. Otherwise it’s a handful or two of instructions you use 90+% of the time.
I needed it often in the past in the PLC world but it is dying out slowly. Nonetheless, when I encounter 30+ year old software I’m happy to be able to get along. And your experience transitions to other architectures like changing from one higher language to another.
Nonetheless, if I’m able to choose, I’ll take Go. Please and thank you 😊